The “X factor” in cellular reprogramming and proliferation
نویسندگان
چکیده
منابع مشابه
I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming
a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...
متن کاملExcessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts.
UNLABELLED The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed hig...
متن کاملImaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography
Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and...
متن کاملTranscriptional reprogramming in cellular quiescence
Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to maintain transcripts and proteins necessary for survival. This implies a ...
متن کاملIn Vivo Cellular Reprogramming: The Next Generation
Cellular reprogramming technology has created new opportunities in understanding human disease, drug discovery, and regenerative medicine. While a combinatorial code was initially found to reprogram somatic cells to pluripotency, a "second generation" of cellular reprogramming involves lineage-restricted transcription factors and microRNAs that directly reprogram one somatic cell to another. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Cycle
سال: 2011
ISSN: 1538-4101,1551-4005
DOI: 10.4161/cc.10.23.18253